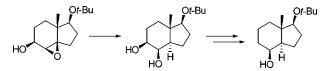
ORGANIC

An Expedited Approach to the Vitamin D *trans*-Hydrindane Building Block from the Hajos Dione


Paweł Chochrek and Jerzy Wicha*

Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw 42, Poland

jwicha@icho.edu.pl

Received March 31, 2006

ABSTRACT

Efficient and operationally simple synthesis of the key *trans*-hydrindane alcohol building block for the synthesis of calicitriol (1 α ,25dihydroxyvitamin D₃) has been developed. Epoxy alcohol prepared almost quantitatively from the Hajos dione was reduced at the quaternary carbon by the Hutchins procedure (NaBH₃CN–BF₃·Et₂O). The diol was selectively deoxygenized either using the Barton–McCombie reaction (with Bu₃SnH–AIBN) or via the respective iodohydrine (with LiAIH₄).

The syntheses of calcitriol $(1\alpha, 25$ -dihydroxyvitamin D₃) **1** (Figure 1) and other derivatives of vitamin D₃ have received

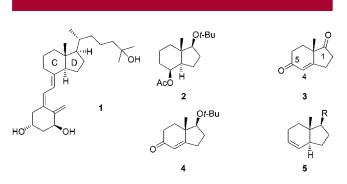
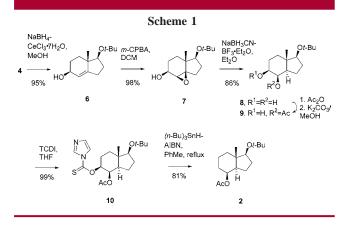


Figure 1. Structures of calcitriol 1, the Hajos dione 3, and selected synthetic precursors to the calcitriol CD ring system.

a great deal of attention¹ due to their application for treatment of various human metabolic diseases and their importance in biomedical research.² The Hajos dione³ **3**, produced from L-proline-catalyzed annulation of 2-methylcyclopentane-1,3dione with methyl vinyl ketone, presents a classic precursor to the calcitriol CD ring building block⁴ **2**. However, methods currently available for saturation of the double bond in **3** or easily accessible derivatives as **4** and for transposition of the oxygen substituent from C-5 to C-4 suffer from serious drawbacks (e.g., catalytic hydrogenation of **3** or **4** affords predominantly *cis*-hydrindan derivatives).

Reduction of the carbonyl group in **4** with the Luche reagent⁵ affords the respective β -alcohol **6** (Scheme 1). Ingenious methods^{6–8} have been developed for hydrogen

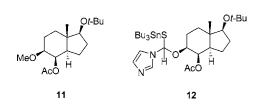
^{(1) (}a) For a review, see: Zhu, G.-D.; Okamura, W. H. *Chem. Rev.* **1995**, 95, 1877–1952. Recent works include: (b) Fernandez, C.; Diouf, O.; Moman, E.; Gomez, G.; Fall, Y. *Synthesis* **2005**, 1701–1705. (c) Rodriguez, R.; Ollivier, C.; Santelli, M. *Synlett* **2006**, 312–314. (d) Gomez-Reino, C.; Vitale, C.; Maestro, M.; Mourino, A. *Org. Lett.* **2005**, 7, 5885–5887. (e) Pandey, G.; Raikar, S. B. *Tetrahedron Lett.* **2006**, 47, 2029–2032.


^{(2) (}a) Bouillon, R.; Okamura, W. H.; Norman, A. W. *Endoc. Rev.* **1995**, *16*, 200–257. (b) Beckman, M. J.; DeLuca, H. F. In *Progress in Medicinal Chemistry*; Ellis, G. P., Luscombe, D. K., Oxford, A. W., Eds.; Elsevier: Amesterdam, 1998; Vol. 35, pp 1–56. (c) Posner, G. H.; Kahraman, M. *Eur. J. Org. Chem.* **2003**, 3889–3895.

⁽³⁾ Hajos, Z. G.; Parrish, D. R. J. Org. Chem. **1973**, 38, 3239–3243. Hajos, Z. G.; Parrish, D. R. Chem. Abstr. German Patent Appl. Jan 21, 1970; Chem. Abstr. **1971**, 75, 129414r.

^{(4) (}a) Baggiolini, E. G.; Iacobelli, J. A.; Hennessy, B. M.; Batcho, A. D.; Sereno, J. F.; Uskoković, M. R. *J. Org. Chem.* **1986**, *51*, 3098–3108.
(b) Wovkulich, P. M.; Barcelos, F.; Batcho, A. D.; Sereno, J. F.; Baggiolini, E. G.; Hennessy, B. M.; Uskoković, M. R. *Tetrahedron* **1984**, *40*, 2283–2296.

⁽⁵⁾ Luche, J.-L.; Rodriguez-Hahn, L.; Crabbe, P. Chem. Commun. 1978, 601–602.


⁽⁶⁾ Corey, E. J.; Engler, T. A. *Tetrahedron Lett.* **1984**, *25*, 149–152.
(7) Mandai, T.; Matsumoto, T.; Kawada, M.; Tsuji, J. J. Org. Chem. **1992**, *57*, 1326–1327.

atom delivery from the α -side in allylic alcohols related to **6** via "chirality transfer". All of these methods lead to olefins **5** which have a lack of regiocontrolling factors for further functionalization. Direct conjugate reduction of ketones **3** with DIBAL—cuprous iodide provides a short-step approach to functionalized *trans*-hydrindane derivatives,⁹ but the fragile nature of the intermediate copper hydride species may obstruct large-scale preparations. More circumvent approaches to **2** starting from **3** or **4** have also been developed.¹⁰ We wish now to present a facile and operationally simple method for transforming **4** into **2** via alcohol **6**, epoxide **7**, and diol **8**.

Allylic alcohol **6** was treated with *m*-CPBA to give β -epoxide **7** quantitatively. Reduction of the epoxide **7** with sodium cyanoborohydride—BF₃•Et₂O in THF according to the Hutchins protocol¹¹ afforded diol **8** in 77% yield. Use of Et₂O¹² as the solvent led to an increase of the product yield to 86%.¹³ Diol **8** was transformed quantitatively into the diacetate which by controlled hydrolysis and chromatography afforded monoacetate **9** in 70% yield along with unchanged diacetate (7%), isomeric monoacetate (7%), and diol **8** (16%). The hydrolysis step was not optimalized extensively since all side products could be easily recycled.

The monohydroxy derivative **9** was esterified with thionocarbonyl-1,1'-diimidazole (TCDI) in THF at reflux, and the thionocarbonate **10** was reduced with tri(*n*-butyl)tin hydride– 2,2'-azobis(2-methylpropanenitrile) (AIBN).¹⁴ Chromatography then gave the known⁴ derivative **2**. The best yields of **2** (80% in two steps) were obtained when a solution of **10** containing AIBN (ca. 20 mol %) was added slowly with a syringe pump to a dilute solution of Bu₃SnH (4 molar equiv) in toluene at reflux. At higher concentrations of tri(*n*butyltin)hydride substantial amounts of the methoxy deriva-

Figure 2. Structures of side products formed on tri(*n*-butyl)tin hydride—AIBN reduction of the imidazolylthionocarbonyl derivative **10**.

tive **11** (Figure 2) were formed along with an unstable tincontaining derivative to which structure **12** was assigned (by ¹H NMR) and the alcohol **9**. Fragmentation of hemiacetal **12** provides a likely mechanism for reversion from **10** to the starting alcohol **9**. When the thionocarbamate **10** in toluene containing AIBN was added to neat Bu₃SnH at 120 °C, methoxy derivative **11** was obtained in 77% yield. Reduction of **10** in dilute solutions but at a lower temperature (80 °C) also gave considerable amounts of **11** and **12**. These results corroborate some earlier reported observations on tri*n*-butyltin hydride reduction of xanthate esters.¹⁵

Although the overall yield of 2 compared rather well with those attainable by other methods, other approaches to selective removal of the C-5 hydroxyl group in diol 8 were examined.

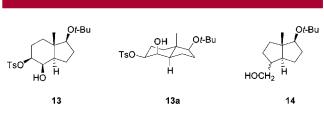


Figure 3. Structures of monotosylate 13 and of the product obtained on its reduction with LiAlH₄.

Monotosylate **13** (Figure 3) was obtained almost quantitatively by treating **8** with 1.5 molar equiv of tosyl chloride in pyridine. Upon reduction of tosylate **13** with LiAlH₄ in THF rearranged primary alcohol **14** was obtained. Antiperiplanar disposition of the C-3a–C-4 bond and the tosyloxy C–O bond explains the rearrangement (Figure 3, **13a**).

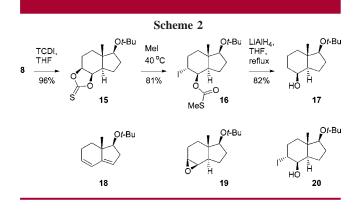
Diol **8** when treated with TCDI produced cyclic thionocarbonate **15** (Scheme 2) quantitatively. Reduction of **15** with tri-*n*-butyltin hydride—AIBN provided a complex mixture of products. Gratifyingly, treatment of **15** with methyl iodide¹⁶ at 40 °C (sealed ampule) provided crystalline and stable iodohydrine derivative **16** (81% yield after chromatography). The structure of **16** was confirmed by narrow multiplets corresponding to equatorial protons at C-4 (δ 5.33 ppm) and C-5 (δ 4.63 ppm). An ¹H NMR spectrum of the

⁽⁸⁾ Corey, E. J.; Virgil, S. C. J. Am. Chem. Soc. **1990**, 112, 6429-6431. Myers, A. G.; Zheng, B. Tetrahedron Lett. **1996**, 37, 4841-4844.

^{(9) (}a) Daniewski, A. R.; Kiegiel, J. J. Org. Chem. **1988**, 53, 5534– 5535. (b) Daniewski, A. R.; Liu, W. J. Org. Chem. **2001**, 66, 626–628.

⁽¹⁰⁾ For a review, see: Jankowski, P.; Marczak, S.; Wicha, J. *Tetrahedron* **1998**, *54*, 12071–12150.

⁽¹¹⁾ Hutchins, R. O.; Taffer, I. M.; Burgoyne, W. J. Org. Chem. 1981, 46, 5214-5215.


⁽¹²⁾ Leyes, A. E.; Poulter, C. D. Org. Lett. 1999, 1, 1067-1070.

⁽¹³⁾ In THF, partial gelling of the solvent occurred that complicated the isolation procedure, especially on larger scale runs.

⁽¹⁴⁾ Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574–1585.

⁽¹⁵⁾ Robins, M. J.; Wilson, J. S.; Hansske, F. J. Am. Chem. Soc. 1983, 105, 4059–4065.

^{(16) (}a) Vedejs, E.; Wu, E. S. C. J. Org. Chem. 1974, 39, 3641–3645.
(b) Barton, D. H. R.; Stick, R. V. J. Chem. Soc., Perkin Trans. 1 1975, 1773–1776.

crude reaction product showed traces of contamination, most likely the regioisomeric iodohydrine derivative.

Reduction of **16** with LiAlH₄ (4 molar equiv) in THF at reflux gave alcohol **17** in 80–85% yield along with some diene¹⁷ **18**, which was easily removed by chromatography or by crystallization. It was found important that the solution of **16** in THF was added dropwise to a refluxing LiAlH₄ solution. Monitoring of the reaction by TLC suggested that intermediates, most likely epoxide **19** and iodohydrine **20** were involved. Indeed, careful reduction of **16** at a room temperature with LiAlH₄ (1 molar equiv) afforded a mixture

(17) Tietze, L. F.; Subba Rao, P. S. V. Synlett 1993, 291-292.

of products from which epoxide **19** (27%), iodohydrine **20** (53%), and diene **18** (18%) were isolated by chromatography.

In summary, the synthetic route from α,β -unsaturated ketone **4** to monoacetate **2** via thionoimidazolyl acetate derivative (**10**) involved seven steps. The product was obtained in 44% yield (neglecting recovery of some diol **8**), which compares rather well to those attainable by other methods. The route via cyclic thionocarbonate (**15**) is one step shorter and provides the product **17** (alcohol) in 51% yield, which is self-indicative. The latter route also has other advantages; namely, no chromatographic purification of intermediates in all synthetic sequences was needed and only the final product (**17**) was briefly filtered through a silica gel column before crystallization.

Synthesis of other *trans*-hydrindane-based natural products by these methods is in progress.

Acknowledgment. We thank Dr. Milan R. Uskoković of BioXell for the generous gift of the Hajos dione and Dr. David M. Piatak for reading and commenting on the manuscript.

Supporting Information Available: Experimental procedures, compound characterization, and copies of ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL060775Y